Anschlußbelegung

Bauform: PLCC-68, (Bild 32)

Bezeichnung	der	Anschlüsse

CLKI Eingang Eingangstakt

90

CLKO Ausgang Taktausgabe der Normalfrequenz

DAL

RESET Eingang RESET des Schaltkreises

BM 0 ... BM 3 Ausgänge Byte-Maske

DAL 00 ... DAL 31 Ein-/Ausgänge, Daten-/Adreßbus

Tristate gemultiplexer, 32 Bit breiter

Bus zur Adreß- u. Datenkommunikation

IRO 3 IRO 2 TEST

As Ausgang, Tristate Adress strobe

DS Ausgang, Tristate Data strobe

DBE Ausgang, Tristate Data buffer enable

WR Ausgang, Tristate Write

EPS Ausgang External processor strobe

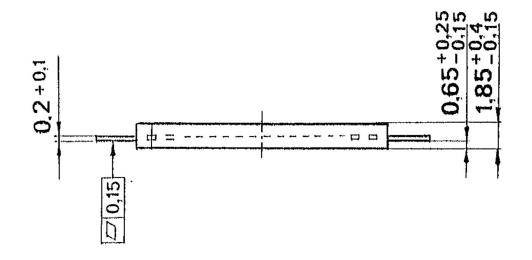
CS 0, CS 1 Ausgänge, Tristate Bus cycle status

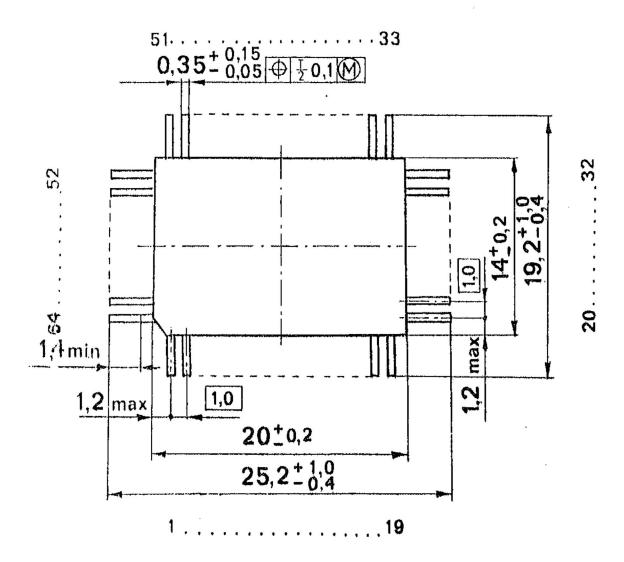
CS 2 Ein-/Ausgang, Tristate Bus cycle status

RDY Eingang Ready

Eingang Error ERR Eingang DMA request DMR Ausgang DMA grant DMG Halt-Interrupt-Anforderung Eingang HALT Timer-Interrupt-Anforderung INTTIM Eingang Power-Fail-Interrupt-Anforderung Eingang PWRFL IRQ 0 ... IRQ 3 Interrupt-Anforderung für Standard-IO-Interruppts Eingänge Testeingang für Bauelementehersteller Eingang TEST Betriebsspannung zur Versorgung der Pinlogik d. Daten-/Adreßbusses U_{CCX} Bezugspotential für U_{CCX} U_{SSX} Betriebsspannung für UCCI CPU DAL 00 Schaltkreislogik 20 21 DAL 01 BM 0 Bezugspotential für U_{CCI} DAL 02 **BM 1** U_{SSI} 22 DAL 03 **BM 2** 23 DAL 04 **BM 3** Bulkspannung, U_{BB} 29 DAL 05 WR 30 intern generiert DAL 06 DMG 31 67 DAL 07 EPS 37 66 DAL 08 DS 36 65 DBE **DAL 09** 64 38 DAL 10 AS 63 DAL 11 62 DAL 12 61 **DAL 13** 60 DAL 14 59 DAL 15 DAL 16 57 **DAL 17** 56 DAL 18 <u>55</u> **DAL 19** 54 **DAL 20** 53 **DAL 21** 50 DAL 22 49 DAL 23 48 DAL 24 47 DAL 25 46 DAL 26 45 DAL 27 44. **DAL 28** 43 **DAL 29** 42 **DAL 30** 41 DAL 31 28 ERR 27 RDY 26 35 CLKO DMR CLKI 24 RESET 19 HALT 18 INTTIM 16 34 CS 0 PWRFL 15 33 CS 1 IRQ 0 14 **IRQ 1** 12 IRQ 2 11 **IRQ 3** 32 CS 2 13 TEST Schaltzeichen

Der U 80701 FC ist ein in nSG-Technologie hergestellter 32 Bit Mikroprozessor. Er er möglicht den Aufbau von Rechnern hoher Leistungsfähigkeit. Er ist für Mehrnutzer und Echtzeitanwendungen geeignet.


Der Schaltkreis U 80701 FC ist ein Mikroprozessor mit voller 32 Bit Architektur, d.h. er besitzt einen externen und internen 32 Bit Daten-/Adreßbus. Der Einsatz dieses Mikroprozessors zusammen mit den anderen Bausteinen des 32 Bit Mikroprozessorsystems mit hoher Verarbeitungsgeschwindigkeit (Taktfrequenz 40 MHz) erlaubt den Aufbau von Rechnern mit lokal und global vernetztem Datenaustausch.


Eigenschaften

- Volle 32 Bit Archikektur
- * Realisierung der RVS-Archikektur
- * externe und interne 32 Bit Datenbusse
- * externe und interne 32 Bit Adressbusse,

!

- hohe Verarbeitungsgeschwindigkeit:
 - * Bei einer Taktfrequenz von 40 MHz wird eine Durchsatzrate von ca. 1 MIPS erreicht.
 - * Die ALU liest innerhalb von 200 ns zwei Operanden, führt eine ALU- oder SHIFT-Operation aus und legt das Ergebnis in ein Register ab,
- großer Adreß-Raum
- * 16 MByte physikalischer Speicher
- * 4 GByte virtueller Speicher,
- integrierte Speicherverwaltungseinheit (MMU) und zwei Adressumsetzpuffer virtuellphysische Adressumsetzung in 25 ns bei Vorhandensein eines gültigen Eintrags im Puffer, einen 512 Byte seitenorientierten Schutzmechanismus sowie eine Verwaltung der Zugriffsrechte (Protection),
- realisierung von 175 verschiedenen Maschinenbefehlen, alle Befehle sind orthogonal in ihrer Struktur und lassen für jeden der maximal 6 Operanden alle der 21 verschiedenen Adressenmodi zu,
- die Abarbeitung der Maschinenbefehle erfolgt mikroprogrammgesteuert, das Mikroprogramm ist in einem 62,4 kByte ROM auf dem Chip gespeichert, zur Beschleunigung der Befehlsabarbeitung ist ein acht Byte tiefer prefetch-stack integriert,
- 15 softwarenmäßig programmierbare Interruptebenen (software interrupt levels) und 7 Interrupteingänge (hardware interrupt inputs) werden unterstützt,
- Registersatz * 16; 32 Bit breite allgemeine Register
 - * 20 Prozessor-bzw. interne Register,
- integrierter Bulkspannungsgenerator,
- Option für Co-Prozessor Anschluss (Floating Point Unit-FPU).

