

Übersichtsschaltplan

Bauform: DIP-18, Plast (Bild 6)

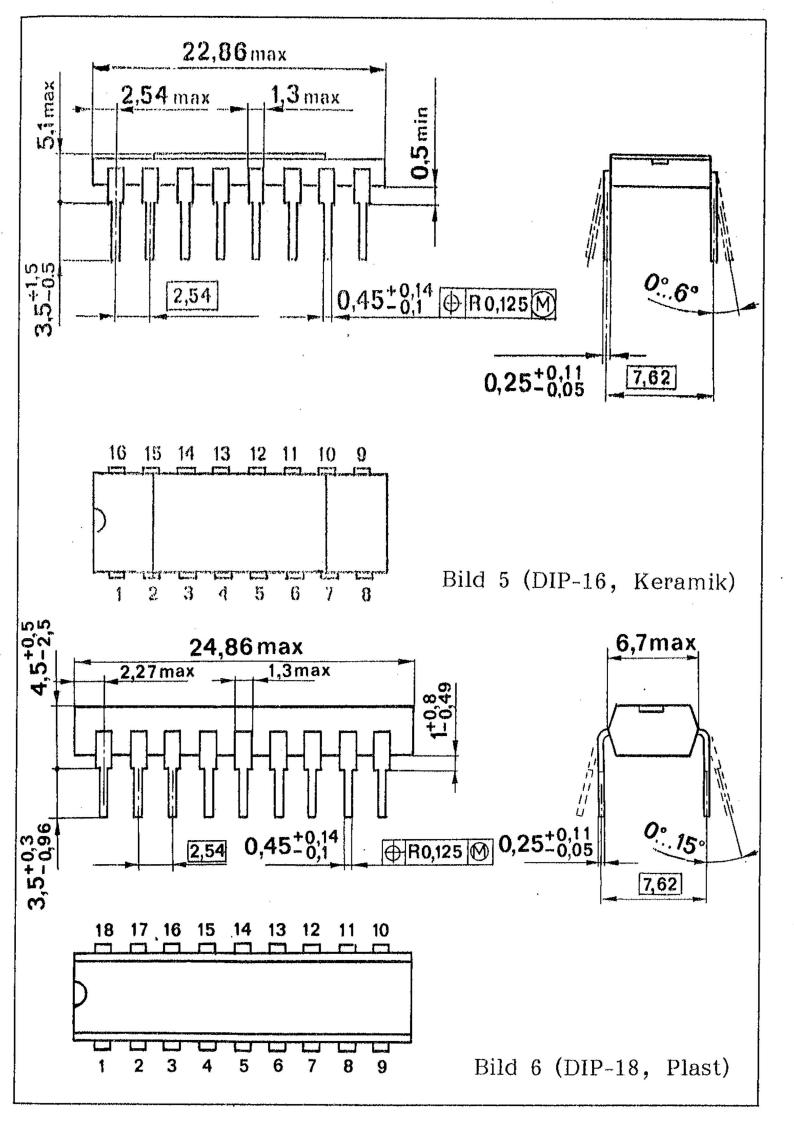
Typstandard: TGL 42789

Bezeichnung der Anschlüsse

1	Einstellanschluß Lautstärke	11	Ausgang linker Kanal (L)
2	Betriebsspannungsabblockung	12	Netzwerk für Höhenbeein-
3	Betriebsspannung		flussung (L)
4	Eingang rechter Kanal (R)	13, 14	Netzwerk für Tiefenbeein-
5, 6	Netzwerk für Tiefenbeeinflussung (R)		flussung (L)
7	Netzwerk für Höhenbeeinflussung (R)	15	Eingang (L)
8	Ausgang (R)	16	Einstellanschluß Balance
9	Einstellanschluß Tiefen	17	Referenzspannung
10	Einstellanschluß Höhen	18	Masse

Der bipolare Schaltkreis A 1524 D ist ein NF-Stereo-Einsteller für die Funktionen Lautstärke, Höhen, Tiefen, Balance und physiologische Lautstärkeeinstellung für NF-Stereosysteme.

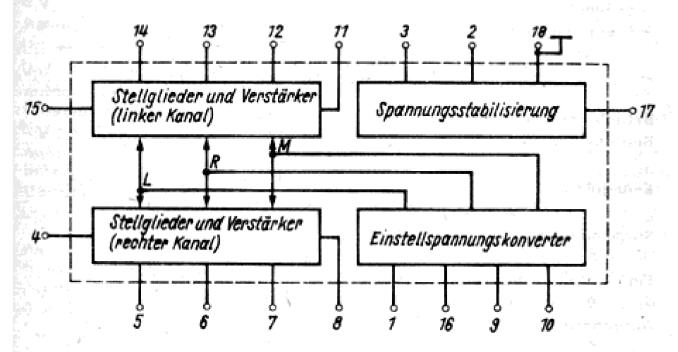
Eigenschaften


- Kontinuierliches Einstellen der Lautstärke gleichlaufend für beide Stereokanäle mittels Gleichspannung,
- gehörrichtige Frequenzgangkorrektur,
- kontinuierliches Einstellen der Lautstärke-Balance in den Stereokanälen mittels Gleichspannung,
- kontinuierliche Beeinflussung des Klangbildes durch Anheben oder Absenken bestimmter Frequenzbereiche gleichlaufend in beiden Stereokanälen,
- großer Betriebsspannungsbereich,
- nur geringe Außenbeschaltung,
- eine Fernbedienung der Stellfunktionen ist möglich,
- Lautstärke umschaltbar zwischen physiologischer (gehörrichtiger) und linearer Regelung.

Folgende Baugruppen sind auf dem Chip integriert:

- Stellglieder und Verstärker linker Kanal,
- Stellglieder und Verstärker rechter Kanal,
- Stabilisierte Stromversorgung und
- Einstellspannungskonverter.

Ausgewählte Kennwerte


Betriebsspannung	$U_{CC} = 7,5 \dots 16,5 \text{ V}$
Stromaufnahme	$I_{CC} \leq 56 \text{ mA}$
Referenzspannung	$U_{17} = 3,3 \dots 4,2 \text{ V}$
Verstärkung	$A_{umax} = 20 \dots 26 \text{ dB}$
Abregelung	$A_{umin} \leq -67 \text{ dB}$
Klirrfaktor $(u_I = 1 \ V)$	k < 0,5 %
Übersprechdämpfung	$ m a_{ct} > 46~dB$
Höhenanhebung	A _{uHmax} > 10 dB
Höhenabsenkung	$A_{uHmin} > -10 \text{ dB}$

NF-Stereo-Einsteller für Lautstärke, Höhen, Tiefen und Balance mit physiol. Lautstärkeeinstellung

Bauform 7

Blockschaltung

Anschlußbelegung:

- 1 Einstellanschluß Lautstärke-
- 2 Betriebsspannungsabblockung
- 3 Betriebsspannung UCC
- 4 Eingang (rechter Kanal)
- 6 Netzwerk für Tiefenbeein-
- flussung (rechter Kanal) 7 Netzwerk für Höhenbeeinflussung (rechter Kanal) 8 Ausgang (rechter Kanal)
- 9 Einstellanschluß Tiefenregelung

- 10 Einstellanschluß Höhenregelung
- 11 Ausgang (linker Kanal) 12 Netzwerk für Höhenbeeinflussung (linker Kanal)
- 13.
- 14 Netzwerk für Tiefenbeeinflussung (linker Kanal)
- 15 Eingang (linker Kanal)
- 16 Einstellanschluß Balance
- 17 Referenzspannung U₁₇
- 18 Masse

Grenzwerte:

	min	max	
Ucc	0	20	V .
U4, U15	0	u_{CC}	·V
Ptot		1,2	W
9,		150	°C
-Í17	0	10	mA
		Δ.	1
U ₁₇	4,5	1/2 · ŪCC −0,7	V
U1, U9,	0	U ₁₇	V
U10, U16			
	U ₄ , U ₁₅ P _{tot} 9 j -I ₁₇ U ₁₇ U ₁ , U ₉ ,	U ₁ , U ₁ , 0 P _{tot} P _j -I ₁ , 0 U ₁ , U ₉ , 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Gültig für U_{CC} ≥ 10,8 V, Physiologie fest eingeschaltet.

Betriebsbedingungen: Betriebsspannung	ucc	min 7,5	max 16,5	v
	$J_{CC} = 15 \text{ V}, \ \theta$ $J_{10} = U_{16} = 0.$	= 25 °C - 5 K, f = 5 · U ₁₇)	1 kHz,	
Stromaufnahme U _I = 0	'cc		56	mA
Eingangsgleichspannung U _I == 0	U4, U15	,6,5	8,2	v
Ausgangsgleichspannung U _I = 0	U ₈ , U ₁₁	5,7	9,3	v
Referenzspannung U1 = 0	U ₁₇	3,3	4,2	v
Verstärkung	A _{Umax} ')	20	26	dB
$U_1 = 100 \text{ mV}, U_1 = U_{17}$ Abregelung	A _{Umin} ')	1	-67	dB
$U_1 = 1 \text{ V}, U_1 = 0 \text{ V}$ Gleichlauf	ΔA _{U³)}	,		
$U_1/_1 = 0.7 \cdot U_{17},$ $U_1/_2 = 0.8 \cdot U_{17},$				
$U_1 = 100 \text{ mV}^2$ $U_1 = 1 \text{ V}, U_1/_3 = 0.4 \cdot U_{17}$		-2,5 -2,5	2,5 2,5	
Höhenanhebung $U_1 = 100 \text{ mV}, U_{10} = U_{12}$	AUHmax ') ()	10		dB
Höhenabsenkung U _I = 1 V, U ₁₀ = 0 V	AUHmin ')4)		10	dB
Tiefenanhebung $U_1 = 100 \text{ mV}, U_9 = U_{17}$	AUTmax 1) 5)	10 ·		dB
Tiefenabsenkung U _I = 1 V, U ₉ = 0 V	AUTmin	1)5)	-10	dВ
Tiefenanhebung bei Physiologie "Ein"	ΔA _{UT} ¹)	6)		
$U_1 = 1 V,$ $U_1 = 0.3 \cdot U_{17}$	2005	6		dB
Klirrfaktor U _I = 1 V	K*)		0,5	0/0
Balanceeinstellung U _I = 1 V,	∆AUT")			
U ₁₆ / ₁ = 0,5 · U ₁₇ ; U ₁₆ / ₂ = U rechter Kanal linker Kanal	17	-3	3 -30	dB dB
$U_{16}/_{1} = 0.5 \cdot U_{17}; \ U_{16}/_{2} = 0$				
rechter Kanal linker Kanal		-3	-30 3	dB dB
Ubersprechdämpfung $U_1 = 1 \text{ V}, U_1 = 0.6 \cdot U_{17}$	aD ,	46		dB

- ¹) Bei S 1 und S 2 wird in Schalterstellung 1 der linke Kanal und in Schalterstellung 2 der rechte Kanal überprüft.
- 2) Abgleich U₁₆ : U₁₆ △ △A_U = 0 dB bei U₁ = 100 mV

$$^{3}) \triangle A_{U} = \frac{U_{o} \text{ für S 2 und S 1 in Stellung 1}}{U_{o} \text{ für S 2 und S 1 in Stellung 2}}$$

4)
$$A_{UH} = \frac{U_o}{U_o}$$
 für S 5 und S 6 in Stellung 2

³) AUT =
$$\frac{U_o}{U_o}$$
 für S 3 und S 4 in Stellung 2

$$\triangle A_{UT} = \frac{U_o}{U_o} \quad \text{für S 7 in Stellung 2}$$

7)
$$\triangle_{UB} = \frac{U_o \text{ für } U_{16/1}}{U_o \text{ für } U_{16/2}}$$

$$a_{UR \to L} = \frac{U_o \quad \text{für S 2 in Stellung 2}}{U_o \quad \text{für S 2 in Stellung 1}} \quad \text{bei S 1 in Stellung 2}$$

$$a_{UR \to L} = \frac{U}{U_o \quad \text{für S 2 in Stellung 2}} \quad \text{bei S 1 in Stellung 1}$$

Abgleich U₁ auf Uo == 2,2 V